MEJOR PREDICTOR LINEAL INSESGADO PARA APTITUD COMBINATORIA GENERAL Y ANÁLISIS COMBINADO DE LOS DISEÑOS DOS Y CUATRO DE GRIFFING

BEST LINEAR UNBIASED PREDICTOR FOR GENERAL COMBINIG ABILITY AND COMBINED ANALYSIS OF GRIFFING'S DESIGNS TWO AND FOUR

Juan V. Hidalgo Contreras¹, Ángel Martínez Garza^{1*}, Ángel A. Mastache Lagunas¹ y Gilberto Rendón Sánchez¹

¹ Programa en Estadística, Instituto de Socioeconomía, Estadística e Informática, Colegio de Postgraduados. Km 36.5 Carr. México-Texcoco, Montecillo, Texcoco, Méx. C.P. 56230. Tel. 01 (595) 954-9117, Correo electrónico angel@colpos.mx ² Colegio Superior de Agricultura del Estado de Guerrero, Iguala, Gro. * Autor responsable

RESUMEN

El diseño de una serie de experimentos que ensaye en diferentes ambientes el mismo conjunto de cruzas dialélicas, es común en la investigación genética. Sin embargo, en el análisis de datos de estos experimentos no se ha utilizado el modelo apropiado. Éste es el modelo lineal de efectos mixtos, debido a la naturaleza aleatoria de la aptitud combinatoria general y específica. En el presente trabajo, para los diseños II y IV de Griffing establecidos en experimentos de bloques completos al azar, se derivan los mejores predictores lineales e insesgados (MPLI) combinados de los efectos de aptitud combinatoria general, con base en la metodología de estimación de efectos aleatorios en un modelo de efectos mixtos. Además, se presenta un algoritmo computacional, en SAS/IML, para el análisis combinado de los experimentos.

Palabras clave: Aptitud combinatoria general, cruzas dialélicas, series de experimentos dialélicos.

SUMMARY

The design of a series of experiments which evaluate, in different environments, the same set of diallel crosses is a common test in plant breeding. However, the appropriate model has not been used when data from these experiments are analyzed. This should be a linear mixed model because of the random nature of the general and specific combining ability effects. In this paper, the combined best linear unbiased predictors (BLUP,s) of general combining abilities are derived, for the Griffing's experiments II and IV, established in randomized complete block designs, under the basis of the estimation methodology of random effects in a linear model of mixed effects. A computational algoritm written in SAS/IML commands is also given for the combined analysis of the experiments.

Index words: General combining abilities, diallel crosses, series of diallel experiments.

INTRODUCCIÓN

Martínez (1988a) discute el análisis combinado de series de experimentos en las situaciones experimentales más usuales. La base para el análisis combinado de los casos

discutidos es, en la mayoría de situaciones examinadas, un modelo lineal de efectos fijos. Esto mismo ha ocurrido hasta ahora con el análisis de series de experimentos de cruzas dialélicas, el cual se efectúa considerando un modelo de efectos fijos al que se imponen restricciones. A partir de los trabajos desarrollados por Mastache et al. (1999, a y b) para obtener los mejores predictores lineales e insesgados (MPLI) de los efectos de aptitud combinatoria general en los diseños II y IV de Griffing, Griffing (1956, a y b), el objetivo de este trabajo es obtener el mejor predictor lineal e insesgado combinado de los efectos de aptitud combinatoria general en los diseños II y IV de Griffing. Se supone nula la interacción cruzas por ambientes, puesto que cuando ésta es significativa, el análisis individual daría posiblemente la interpretación más adecuada. El modelo lineal básico es de la forma:

$$\begin{aligned} y_{ijkl} &= \mu + \pi_l + \beta_{kl} + \tau_{ij} + (\pi\tau)_{ijl} + e_{ijkl} \\ &l \leq i, j \leq p; k = 1, 2, ..., r; l = 1, ..., p \end{aligned}$$
 (Ec. 1)

donde μ , π , y τ son un efecto común, y los efectos de ambientes, bloques y cruzas, respectivamente; $\pi\tau$ es la interacción cruzas por ambientes; y y e son el valor fenotípico observado y el término de error. El efectos de cruza es: $\tau_{ij} = g_i + g_j + s_{ij} + m_i - m_j + l_{ij}$, donde g y m son efectos de aptitud combinatoria general y materno, en tanto que s y l son los efectos de aptitud combinatoria específica y recíproco, respectivamente. Además, σ_g^2 , σ_s^2 , σ_m^2 y σ_s^2 son las varianzas de tales componentes, que se suponen normales, no correlacionadas dentro y entre ellas, ni con los términos de error, todas con media cero; el resto de los componentes del modelo $\mu\pi$, y se consideran fijos, excepto por los errores e que se suponen aleatorios y normalmente distribuidos, con media cero, varianza σ_e^2 , y sin

Recibido: 8 de Noviembre del 2002. Aceptado: 27 de Agosto del 2003. correlación entre sí, ni con el resto de los componentes del modelo. Adicionalmente se tiene $s_{ij} = s_{ji}$ y $l_{ij} = -l_{ji}$.

METODOLOGÍA

De acuerdo con Martínez (1983, 1988, a, b, y c, y 1991), el modelo lineal apropiado para realizar el análisis de experimentos dialélicos, establecidos en diseño de bloques completos al azar, en una determinada localidad es:

$$y_{ijk} = \mu + g_i + g_j + s_{ij} + m_i - m_j + l_{ij} + \beta_k + e_{ijk},$$

 $1 \le i, j \le p; \quad k = 1, 2, ..., r$ (Ec. 2)

donde y, $\mu_{x...}$, g, s, m, l y e se definieron en el párrafo anterior. El modelo completo especificado en Ec. 2, es adecuado para la estimación o predicción de efectos maternos; es decir, en situaciones donde se sospecha que la cruza directa, no produce el mismo resultado que la cruza recíproca. Cuando los efectos maternos no interesan, la interpretación de los resultados de un experimento dialélico se basa en el modelo reducido:

$$y_{ijk} = \mu + g_i + g_j + s_{ij} + \beta_k + e_{ijk},$$

 $1 \le i, j \le p; \quad k = 1, 2, ..., r$ (Ec. 3)

Sin pérdida de generalidad, si sólo se consideran las medias de las cruzas y se elimina el efecto de bloques, dado que éste es ortogonal al de cruzas, la representación de los modelos 2 y 3 se reduce a:

$$y_{ij.} = \mu + g_i + g_j + s_{ij} + m_i - m_j + l_{ij} + e_{ij.}, y$$
 (Ec. 4)

$$\bar{y}_{ij.} = \mu + g_i + g_j + s_{ij} + \bar{e}_{ij.}$$
 (Ec. 5)

respectivamente.

De acuerdo con Mastache *et al.* (1999a), dado que en los diseños que aquí se estudian participan las cruzas directas, el modelo apropiado para la obtención de los MPLI empíricos es el proporcionado en la Ec. 5. En notación matricial, este modelo puede representarse en la forma siguiente:

$$\begin{array}{ccc}
 & - & - \\
y = j\mu + Z_{ng} + s + e, & \text{(Ec. 6)}
\end{array}$$

donde $y = (y_{1,2}, y_{1,3}, ..., y_{p-1,p})'$ es un vector de tamaño t x 1 [con t = p(p-1)/2 o p(p+1)/2] de variables aleatorias observables (que se han reducido a promedios de cruzas (i, j), sin pérdida de generalidad); j es un vector de unos, de tamaño

 $t \ge 1$; μ es la media general; Z_p es la matriz diseño de tamaño $t \ge p$; g = [gi], s = [sij] y e = [eij] son vectores de variables aleatorias no observables de p, t y t elementos, respectivamente. Además, E(g) = 0, E(s) = 0, E(e) = 0; consecuentemente:

$$E(y) = j\mu$$

$$Var(\mathbf{y}) = E[(\mathbf{y} - j\mu)(\mathbf{y} - \mathbf{j}\mu)']$$

$$= E[(\mathbf{Z}_{p}\mathbf{g} + \mathbf{s} + \mathbf{e})(\mathbf{Z}_{p}\mathbf{g} + \mathbf{s} + \mathbf{e})'] = \sigma_{g}^{2}\mathbf{Z}_{p}\mathbf{Z}_{p}' + \left[\frac{r\sigma_{s}^{2} + \sigma_{e}^{2}}{r}\right]I_{t}$$
(Ec. 7)

donde I_t es una matriz identidad de dimensión txt.

MPLI empírico combinado de ACG en el diseño IV

En el diseño IV de Griffing sólo se considera el ensayo de las t = p(p-1)/2 cruzas directas entre los p progenitores.

Si en la Ec. 6 el vector \bar{y} contiene el promedio de las cruzas observadas sobre los ambientes, y si $e_c^* = s + \bar{e}$, dado que s y \bar{e} tienen una estructura de covarianzas similar, entonces \bar{y} puede escribirse como:

$$y = j\mu_c + Z_{p_c}g_c + e_c^*$$

donde se ha agregado el subíndice c, con el propósito de enfatizar que se combina información de varios experimentos (aunque podría omitirse). Nótese que, en el caso particular de "s" ambientes,

$$var(\mathbf{y}) = \sigma_{g_c}^2 \mathbf{Z}_{p_c} \mathbf{Z}'_{p_c}$$

$$+ \left[\frac{r * \sigma_{s_c}^2 + \sigma_{e_c}^2}{r^*} \right] \mathbf{I}_t = \sigma_{g_c}^2 \mathbf{Z}_{p_c} \mathbf{Z}'_{p_c} + \sigma_{e_c}^2 \mathbf{I}_t$$

$$= \left[\mathbf{I}_t + \mathbf{Z}_{p_c} \mathbf{G}_c \mathbf{Z}'_{p_c} \right] \sigma_{e_c}^2$$
(Ec. 8)

320

donde
$$\sigma_{e_c}^2 = \left[\frac{r * \sigma_{s_c}^2 + \sigma_{e_c}^2}{r *} \right], \quad r^* = rs, \quad y \quad G_c = I_p \left(\frac{\sigma_{s_c}^2}{\sigma_{e_c}^2} \right)$$

Además, bajo las consideraciones anteriores, las ecuaciones normales para el modelo de efectos mixtos obtenidas por Mastache *et al.* (1999a), en este caso quedan como:

$$\mathbf{j'} \mathbf{j} \mu_{c} + \mathbf{j'} \mathbf{Z}_{p_{c}} \mathbf{g}_{c}^{\wedge} = \mathbf{j'} \mathbf{y}$$

$$\mathbf{z'}_{p_{c}} \mathbf{j} \mu_{c} + \left[\mathbf{z'}_{p_{c}} \mathbf{z}_{p_{c}} + \mathbf{G}_{c}^{-1} \right] \mathbf{g}_{c}^{\wedge} = \mathbf{z'}_{p_{c}} \mathbf{y},$$
(Ec. 9)

donde \mathbf{j} es un vector columna de unos de dimensión ($t \times 1$).

Si se conocen los componentes de varianza $\sigma_{e_c}^2$, $\sigma_{s_c}^2$ y $\sigma_{g_c}^2$, el mejor predictor lineal insesgado de \mathbf{g}_c , $\mathbf{g}_c^{\wedge} = [\mathbf{g}_{ic}]$, se obtiene al imponer la restricción $\sum_{i=1}^{p} \mathbf{g}_{ic}^{\wedge} = \mathbf{0}$;

el álgebra produce la solución siguiente:

$${\stackrel{\wedge}{\mu}}_{c} = (j', j)^{-1} j' {\stackrel{-}{y}}$$
 (Ec. 10)

$$\stackrel{\wedge}{\mathbf{g}}_{c} = \left[\mathbf{Z'}_{\mathbf{p}_{c}} \mathbf{Z}_{\mathbf{p}_{c}} + \mathbf{G}_{c}^{-I} \right]^{-I} \left(\mathbf{Z'}_{\mathbf{p}_{c}} \mathbf{y} - \mathbf{Z'}_{\mathbf{p}_{c}} \mathbf{j} \stackrel{\wedge}{\boldsymbol{\mu}_{c}} \right)$$
(Ec. 11)

donde μ_c es equivalente a

$$\hat{\mu}_c = (1/t) \hat{j}' \hat{y} = (Y_{...}/trs) = y_{...}$$

Para obtener \hat{g}_c , obsérvese que la matriz diseño \mathbf{z}_{p_c} de dimensión $t \times p$ es de la forma:

$$\mathbf{Z}_{p_c} = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & & & & \vdots \\ 1 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & & & & \vdots \\ 0 & 1 & 0 & \cdots & 0 & 1 \\ & & \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \end{bmatrix}$$

de aquí, si $\bar{y}_{...}$ se sustituye en Ec. 11, \hat{g}_{c} sería equivalente a:

$$\hat{\mathbf{g}}_{c} = \left[\mathbf{Z}_{p_{c}} \, \mathbf{Z}_{p_{c}} + \mathbf{G}_{c}^{-I} \right]^{-I} \left[\mathbf{Z}_{p_{c}}^{-} \, \mathbf{y} - \mathbf{Z}_{p_{c}} \, \mathbf{j} \, \mathbf{y} \right]$$
 (Ec. 12)

Además, dado que:

$$\mathbf{z}_{p_{c}}^{'} \mathbf{\bar{y}} - \mathbf{z}_{p_{c}}^{'} \mathbf{j} \mathbf{\bar{y}}_{...} = \begin{bmatrix} Q_{L}^{*}/(sr) - 2y_{...}/(srp) \\ \vdots \\ Q_{p.}/(sr) - 2y_{...}/(srp) \end{bmatrix}$$

donde:

$$\sum_{l=1}^{s} Q_{il}^{*} = Q_{i.}^{*} = Q_{i1} + \dots + Q_{is}, \quad Q_{il}^{*} = \sum_{j \neq i}^{p} y_{ijl},$$

$$y_{...} = y_{...} + \dots + y_{...s}, \quad i = 1, 2, ..., p. \text{ Además},$$

$$\mathbf{Z}_{p_{c}}^{'} \mathbf{y} - \mathbf{Z}_{p_{c}}^{'} \mathbf{j} \mathbf{y}$$

$$= (p-2) \begin{bmatrix} [1/(sr(p-2))](Q_{1.}^* - 2y_{....}/p) \\ \vdots \\ [1/(sr(p-2))](Q_{p.}^* - 2y_{....}/p) \end{bmatrix}$$

$$= [(p-2)/s]$$

$$\begin{bmatrix} [1/(r(p-2))][(Q_{11}+\cdots+Q_{1s})-2(y_{...1}+\cdots+y_{...s})/p]\\ \vdots\\ [1/(r(p-2))][(Q_{p1}+\cdots+Q_{ps})-2(y_{...1}+\cdots+y_{...s})/p \end{bmatrix}$$

$$=[(p-2)/s]$$

$$\bullet \begin{bmatrix}
Q_{I1} & Q_{Is} & 2y_{...1} & 2y_{...s} \\
r(p-2) & r(p-2) & rp(p-2) & rp(p-2)
\end{bmatrix}$$

$$\bullet \begin{bmatrix}
Q_{p1} & Q_{ps} & 2y_{...i} & 2y_{...s} \\
r(p-2) & r(p-2) & rp(p-2) & rp(p-2)
\end{bmatrix}$$

$$= [(p-2)/s]$$

$$\begin{bmatrix} \underbrace{\left(\frac{Q_{11}}{r(p-2)}, \frac{2y_{...1}}{rp(p-2)}\right)}_{rp(p-2)} + \underbrace{\left(\frac{Q_{1s}}{r(p-2)}, \frac{2y_{...s}}{rp(p-2)}\right)}_{rp(p-2)} \end{bmatrix}}_{=[(p-2)/s]W}$$

$$= [(p-2)/s]W$$

por lo que se llega a la siguiente expresión:

$$\mathbf{Z}'_{p_c} \mathbf{\bar{y}} - \mathbf{Z}'_{p_c} \mathbf{\bar{y}} \mathbf{\bar{y}} \dots = \frac{(p-2)}{s} \mathbf{W}^*$$
 (Ec. 13)

donde W* es el vector de estimadores mínimo-cuadráticos de los efectos de aptitud combinatoria general, derivado por Martínez (1983):

$$\begin{pmatrix} \bigwedge^* W * \end{pmatrix}' = \begin{bmatrix} \bigwedge^* & % & \bigwedge^* & \wedge^* & \bigwedge^* & \bigwedge^* & \bigwedge^* & \wedge^* & \bigwedge^* & %^* & \bigwedge^* & \bigwedge^* & \bigwedge^* & %^* & \wedge^* & \wedge^* & \wedge^* & \wedge^* & \wedge^* &$$

Por otra parte,

$$\mathbf{Z}_{p_{\mathbf{C}}}^{'}\mathbf{Z}_{p_{\mathbf{C}}} = \begin{bmatrix} (p-1) & 1 & \cdots & 1 \\ 1 & (p-1) & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & (p-1) \end{bmatrix}$$

y de aquí:

$$\mathbf{Z}'_{p_{c}} \mathbf{Z}_{p_{c}} + G_{c}^{-1} = \begin{bmatrix} (p-1) + \sigma_{*}^{2} / \sigma_{2}^{2} & 1 & \cdots & 1 \\ & & & & & \\ I & & & & & \\ & & & & & \\ \vdots & & & & \vdots & \ddots & \vdots \\ & & & & & & \\ 1 & & & & & & \\ \end{bmatrix}$$

La inversa de la matriz anterior es de la forma siguiente:

$$\left[\mathbf{Z'}_{p_c} \ \mathbf{Z}_{p_c} + \mathbf{G}_c^{-I}\right]^{-I} = \begin{bmatrix} a & -b & \cdots & -b \\ -b & a & \cdots & -b \\ \vdots & \vdots & \ddots & \vdots \\ -b & -b & \cdots & a \end{bmatrix}$$
(Ec. 14)

donde

$$b = \frac{1}{\left[(p-2) + \sigma_{e_c}^2 / \sigma_{g_c}^2 \right] \left[2(p-1) + \sigma_{e_c}^2 / \sigma_{g_c}^2 \right]},$$

$$y \quad a = b \left[\frac{\sigma_{e_c}^2 / \sigma_{g_c}^2}{\sigma_{e_c}^2 / \sigma_{g_c}^2} + (2p-3) \right]$$

Al sustituir las Ecs. 13 y 14 en la Ec. 12, y al tomar en cuenta la restricción de que $\sum_{i=1}^{p} N_i^* = 0$, se tiene que:

Ahora:

$$a+b = \frac{1}{\left[(p-2) + \frac{\sigma_{*}^{2}}{e_{c}} / \frac{\sigma_{c}^{2}}{g_{c}} \right]}$$

Por otra parte:

$$k_{I} = (p-2)(a+b)$$

$$= \frac{p-2}{\left[(p-2) + \sigma_{e_{c}}^{2} / \sigma_{g_{c}}^{2}\right]} = \frac{1}{1 + \left(\frac{1}{(p-2)}\right) \left[\sigma_{e_{c}}^{2} / \sigma_{g_{c}}^{2}\right]}$$

$$= \frac{1}{1 + \left(\frac{1}{(p-2)}\right) \begin{bmatrix} \frac{rs\sigma_s^2 + \sigma_e^2}{rs} & \frac{rs}{e_c} \\ \frac{rs}{\sigma_g^2} & \frac{rs}{g_c} \end{bmatrix}}$$

$$= \frac{1}{1 + \left(\frac{1}{(p-2)}\right) \left[\frac{rs\,\sigma_s^2 + \sigma_c^2}{rs\,\sigma_{gc}^2}\right]}$$

Así, el MPLI combinado para el vector de aptitudes combinatorias generales, se reduce a la siguiente expresión:

donde:

$$k_l \in (0, l)$$

y

$$(1/s) \mathbf{W}^* = (1/s) \begin{bmatrix} \wedge \\ W_I \\ \wedge \\ W_2 \\ \vdots \\ \wedge \\ W_D \end{bmatrix} = (1/s) \begin{bmatrix} \wedge & \wedge \\ W_I + \dots + W_I \\ 1I & 1s \\ \wedge \\ W_I + \dots + W_I \\ 2I & \vdots \\ \wedge \\ W_D I + \dots + W_D S \end{bmatrix},$$

$$\overset{\wedge}{\mathbf{w}}_{\mathbf{c}} = \begin{bmatrix}
 & & & & & \\
 & (W_1 + \dots + W_n)/s \\
 & & \vdots \\
 & & & \vdots \\
 & & & & \\
 & & & (W_{p1} + \dots + W_{ps})/s
\end{bmatrix}$$

Ahora bien, según la expresión anterior, el estimador de mínimos cuadrados combinado (EMC combinado) para aptitud combinatoria general es el promedio de los estimadores de mínimos cuadrados individuales por ambiente. Puede verse también que el MPLI combinado, no es el promedio de los MPLI por localidad; esto ocurre sólo en el caso en el que la constante k_1 es igual a uno. Por lo que el MPLI combinado queda como:

MPLI empírico combinado de ACG en el diseño II

En este diseño se incluyen las autofecundaciones, además de la evaluación de las t=p(p-1)/2 cruzas directas entre los p progenitores; así, la matriz z_{pc} es de la forma:

$$\mathbf{Z}_{p_{c}} = \begin{bmatrix} 2 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ 0 & 2 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & 1 & 0 & \cdots & 1 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

Al sustituir \mathbf{z}_{p_c} en la Ec. 11, se tiene el MPLI combinado de \mathbf{g}_c , de la misma forma que en el diseño IV de Griffing; es decir:

$$\hat{g}_{c} = \left[Z'_{p_{c}} Z_{p_{c}} + G_{c}^{-1} \right]^{-1} \begin{bmatrix} - & - \\ Z'_{p_{c}} y - Z'_{p_{c}} jy \end{bmatrix}$$

donde, $G_c = I_p \left(\frac{\sigma_{gc}^2}{\sigma_{e^*}^2} \right)$ y, además, dado que

$$\left[\mathbf{Z}_{p_c} \right]' = (1/r) \left[\mathcal{Q}_{1.}^{**}, \mathcal{Q}_{2.}^{**}, \dots, \mathcal{Q}_{p.}^{**} \right], \text{ con}$$

$$\sum_{l=1}^{s} Q_{il}^{**} = Q_{i.}^{**} = Q_{i1} + \dots + Q_{is} \; , \; \; Q_{il}^{**} = \sum_{j=1}^{p} y_{ijl} \; ,$$

$$y_{ij...} = y_{ji...}, \mathbf{Z'_{p_c}} \mathbf{j'_{y...}} = \frac{2y_{...}}{rsp} \mathbf{j_p},$$

entonces:

$$\mathbf{Z'}_{p_c} \overset{-}{\mathbf{y}} - \mathbf{Z'}_{p_c} \overset{-}{\mathbf{j}} \overset{-}{\mathbf{y}} \dots$$

$$= [(p+2)/s] \begin{bmatrix} \frac{Q_1^*}{r(p+2)} & \frac{2y_{...}}{rp(p+2)} \\ \vdots & \vdots \\ \frac{Q_p}{r(p+2)} & \frac{2y_{...}}{rp(p+2)} \end{bmatrix} = [(p+2)/s] \hat{W}^{**}$$

donde:

$$Q_{I.}^{**} = Q_{i1} + \dots + Q_{is}, Y_{...} = Y_{...I} + \dots + Y_{...s}$$

$$\begin{pmatrix} \wedge^{**} \\ W \end{pmatrix}, = \begin{bmatrix} \wedge^{**} & \wedge^{**} & \wedge^{**} \\ W & l & , W & 2 & , \cdots , W & p \end{bmatrix}, \quad \begin{pmatrix} \wedge^{**} & \wedge & \wedge \\ W & i & , W & i & , w & i & , w \end{pmatrix}$$

$$i = 1, 2, \cdots, p, \quad l = 1, 2, \cdots, s, y$$

 $\stackrel{\wedge}{W}_{i.}^{**} = \frac{Q_{i.}^{**}}{r(p+2)} - \frac{2Y_{...}}{rp(p+2)}, \text{ es el estimador de mínimos cua-}$

drados (EMC) de g (Martínez, 1983). Con un procedimiento similar al utilizado en el caso del diseño IV de Griffing:

$$\left[\mathbf{Z'}_{p_{\mathbf{C}}} \ \mathbf{Z}_{p_{\mathbf{C}}} + \mathbf{G}_{\mathbf{C}}^{-1} \right]^{-1} = \begin{bmatrix} a^* & -b^* & \cdots & -b^* \\ -b^* & a^* & \cdots & -b^* \\ \vdots & \vdots & \ddots & \vdots \\ -b^* & -b^* & \cdots & a^* \end{bmatrix}$$

donde:

$$b^* = \frac{1}{\left[(p+2) + \frac{\sigma_e^2}{\sigma_g^2} \right]} \begin{bmatrix} \sigma_e^2 & \sigma_e^2 \\ 2(p+1) + \frac{e_c}{\sigma_g^2} \\ \sigma_g^2 & \sigma_g^2 \end{bmatrix}} y$$

$$a^* = b^* \begin{bmatrix} \frac{\sigma_e^2}{\sigma_g^2} + (2p+1) \\ \frac{e_c}{\sigma_g^2} + (2p+1) \end{bmatrix}$$

Así:

$$\overset{\wedge}{\mathbf{g}}_{c} = \frac{k_{2}}{s} \overset{\wedge}{\mathbf{W}}^{*} = k_{2} \overset{\wedge}{\mathbf{W}}_{c}$$

en el cual:

$$\kappa_2 = \frac{\sigma_*^2}{\sigma_*^2} = \frac{\sigma_*^2}{\sigma_{gc}^2}$$

$$\frac{1}{1 + \left(1/(p+2)\right) \left[\frac{rs\,\sigma_s^2 + \sigma_{ec}^2}{rs\,\sigma_*^2}\right]} \in (0,1)$$

En general, para los diseños II y IV de Griffing se introduce la notación adicional, que define a:

Con un procedimiento similar al utilizado para obtener el MPLI combinado para el caso del diseño IV de Griffing, se obtiene:

donde:

doinde.

$$k = \frac{(4q + p - 2)}{\sigma^{2}}$$

$$(4q + p - 2) + \frac{e_{c}^{*}}{\sigma^{2}}$$

$$= \frac{1}{1 + \left(\frac{1}{(4q + p - 2)}\right) \left[\frac{rs\sigma_{s}^{2} + \sigma_{c}^{2}}{rs\sigma_{gc}^{2}}\right]} \in (0, 1)$$
(Ec. 15)

y \hat{W}_c es el estimador de mínimos cuadrados combinado de progenitor en el modelo de efectos fijos, tanto para el diseño II como el IV de Griffing.

Cuando no se conocen los componentes de varianza involucrados en k, éstos pueden ser sustituidos por sus respectivos estimadores para obtener el MPLI empírico. Harville y Carriquiry (1992) y Kackar y Harville (1981) demostraron en situaciones similares que las estimaciones permanecen insesgadas cuando los elementos de k tienen que ser estimados.

En el diseño de bloques completos al azar, una forma sencilla de obtener estimadores de los componentes de varianza, es mediante el análisis de varianza; éste consiste en utilizar el cuadro del análisis de varianza en que se consideran las propiedades aleatorias de los efectos para derivar las esperanzas matemáticas de los cuadrados medios; luego se igualan cuadrados medios calculados con sus respectivas esperanzas, para obtener los estimadores deseados. Martínez (1983) indica que los estimadores combinados de los componentes de varianza en los diseños II y IV de Griffing, son:

$$\sigma_{gc}^{2} = (CM_{ACG} + CM_{LXACE} - CM_{ACE} - CM_{LXACG})/[sr(4q + p - 2)]$$
(Ec. 16)

$$\hat{\sigma}_{sc}^{2} = (CM_{ACE} - CM_{LXACE})/(sr)$$
 (Ec. 17)

$$\overset{\wedge}{\sigma}_{lxacg}^{2} = (CM_{LXACG} - CM_{LXACE})/[r(4q + p - 2)]$$
(Ec. 18)

$\hat{\sigma}_{lxace}^{2} = (CM_{LXACE} - CME_{c})/r$ (Ec. 19)

$$\sigma_e^2 = CME_c$$
 (Ec. 20)

donde CME $_c$ es el cuadrado medio del error combinado, CM $_{ACE}$ es el cuadrado medio de la aptitud combinatoria específica combinado y CM $_{ACG}$ es el cuadrado medio de la aptitud combinatoria general combinado. Al sustituir los estimadores en Ec. 16 a Ec. 20 en la expresión para k de

la Ec. 14, se obtiene el MPLI empírico combinado g de g.

ALGORITMO COMPUTACIONAL

Para ilustrar la metodología en el cálculo del MPLI combinado de aptitud combinatoria general en el diseño IV de Griffing, se usará un ejemplo con datos ficticios, con cinco progenitores, dos repeticiones y dos localidades. Para obtener el MPLI combinado se utiliza un programa de cómputo desarrollado en SAS-IML en su versión para Windows, elaborado para "Series de Experimentos de Griffing" por el Dr. Ángel Mastache Lagunas¹, el cual se presenta en el Apéndice. La impresión de resultados que se obtiene al aplicar el algoritmo computacional a estos datos, se muestra en la Figura 1, tal como resulta.

De acuerdo con el programa desarrollado, la información de la serie de experimentos que provenga de alguno de los diseños de cruzas dialélicas, debe organizarse en un archivo en SAS. La estructura general del archivo de datos es la siguiente:

OPTIONS PS=60 PAGENO=1 NODATE;

DATA MASTACHE; INPUT LOC CRUZA I J DIALELO REP Y1 ... YN; CARDS:

"DATOS"

Nota: EN ESTA POSICIÓN SE DEBE UBICAR EL PROGRAMA PARA REALIZAR EL ANÁLISIS

SERIES DE EXPERIMENTOS DE GRIFFING

NN CRUZAS P L R 40 10 5 2 2

> DISEÑO 4 DE GRIFFING VARIABLE 1

CUADRO 1. ANÁLISIS DE VARIANZA COMBINADO.

FV	GL	SC	CM	F	
LOCALIDAD	1	2706.0250	2706.025	10.0549	
(L)					
REP:L	2	538.25	269.125		
CRUZA (C)	9	7034.025	781.55833	0.6855625	
ACG	4	3914.2333	978.55833	1.1439663	
ACE	5	3119.7917	623.95833	0.6016037	
LxC	9	10260.225	1140.025	2.5405243	
L x ACG	4	5074.4333	1268.6083	1.2231578	
L x ACE	5	5185.7917	1037.1583	2.3112879	
ERROR				•	
COMB.	18	8077.25	448.73611		
TOTAL	39	28615.775	•	•	
	MI	EDIA	CV		
	48.5750 43.6097				

CUADRO 2. ESTIMADORES DE COMPONENTES DE LA VARIANZA.

COM- VARIAN-PO- ZA ESTI-NENT E MADA VARg* 10.2625 VARs 0.0000 VARag 38.5750 VARas 294.2111 VARe 448.7361

*VAR ES ABREVIATURA DE VARIANZA

¹ Profesor del Área de Estadística, Colegio Superior Agropecuario del Estado de Guerrero

CUADRO 3. ESTIMACIÓN DEL EFECTO DE PROGENITOR.

LOCALIDAD						
PROGE	1	2	EMC*			
NITOR						
1	12.7000	12.7667	12.7333			
2	-19.9667	2.7667	-8.6000			
3	-10.4667	6.1000	-2.1833			
4	11.3667	-0.4000	5.4833			
5	6.3667	-21.2333	-7.4333			
MPLIC**						
2.741997						
-1.851925						
-0.470159						
1.180781						
-1.600695						
K						
0.2153						

*EMC=ESTIMADOR MÍNIMO-CUADRÁTICO **MPLIC=MEJOR PREDICTOR LINEAL INSESGADO COMBINADO

Figura 1. Impresión de resultados al aplicar el algoritmo computacional.

Como resultados de salida, el programa produce el análisis de varianza combinado para prueba de hipótesis, los estimadores de los componentes de la varianza, los MPLI de los efectos de aptitud combinatoria general por ambiente, los estimadores mínimo-cuadráticos (EMC) y los MPLI combinados (MPLIC) de las aptitudes combinatorias generales de cada progenitor.

DISCUSIÓN

Según Mastache *et al.* (1999a), quienes desarrollaron la metodología para obtener los mejores predictores lineales e insesgados (MPLI) en los diseños II y IV de cruzas dialélicas, en el caso específico de los experimentos de cruzas dialélicas si se consideran aleatorios los efectos de aptitud combinatoria general, aptitud combinatoria específica, efectos maternos y efectos recíprocos, se requiere el uso de los MPLI en lugar de los estimadores de mínimos cuadrados generalizados (EMCG), puesto que si se utilizan estos últimos es posible obtener una subestimación o sobreestimación de los efectos de aptitud combinatoria general y en consecuencia una mayor varianza.

Martínez (1983) demostró que \hat{W} es el estimador insesgado de aptitud combinatoria general combinado, bajo el modelo de efectos fijos, que es el promedio aritmético de los estimadores de mínimos cuadrados (\hat{w}) individuales. A partir de los resultados de Mastache *et al.* (1999a), basado en el modelo de efectos mixtos, y con localidades como efectos fijos, en el presente trabajo se demostró que \hat{g}_c es el mejor predictor lineal e insesgado combinado de aptitud combinatoria general para los diseños II y IV de Griffing, el cual no es el promedio aritmético de los predictores individuales, sino:

$$g_{c} = (k_{I} / s) \hat{W}^{*} = k_{I} \hat{W}_{c}$$

donde: k_1 es una constante que toma valores en el intervalo (0, 1); s es el número de localidades; y $\mathbf{\hat{w}}_c$ es el estimador de mínimos cuadrados combinado.

Nótese que, en general, la varianza de \hat{g}_c será menor o cuando mucho igual que la de \hat{w}_c . Es decir,

$$Var(\mathbf{g}_c) = k_1^2 Var(\mathbf{W}_c) \le Var(\mathbf{W}_c)$$

Por otra parte, como corresponde al método, también presenta la propiedad de insesgo; es decir:

$$E\begin{bmatrix} \land \\ g_c \end{bmatrix} = E\begin{bmatrix} k_1 & \land \\ W_c \end{bmatrix} = k_1 E\begin{bmatrix} \land \\ W_c \end{bmatrix} = 0$$

En la práctica, raras veces se conocen los valores verdaderos de las componentes de varianza involucradas en la obtención de g_c ; es decir, se desconoce el valor verdadero de g_c ; es decir, se desconoce el valor verdadero de g_c ; es decir, se desconoce el valor verdadero de g_c ; es decir, se desconoce el valor verdadero de g_c ; es posible utilizar una estimación de g_c ; que de acuerdo con los últimos autores corresponde al MPLI combinado empírico. Así, al utilizar los estimadores de las componentes de varianza derivados por Martínez (1983), se obtiene una estimación de g_c ; en consecuencia, el MPLI combinado de aptitud combinatoria general de los diseños II y IV de Griffing empírico de g_c . La derivación supone nulos los efectos de la interacción cruzas por ambientes.

CONCLUSIONES

En relación con el análisis de series de experimentos de cruzas dialélicas que ensayen en diferentes ambientes el mismo conjunto de cruzas, establecidos en diseños de bloques completos al azar, en este trabajo se obtiene el MPLI combinado de los efectos de aptitud combinatoria general (g_c) , para los diseños II y IV de Griffing. La solución obtenida deja a un lado, definitivamente, la vieja técnica (equivocada) de emplear un modelo de efectos fijos para resolver el problema. La investigación se completa con un programa en comandos SAS/IML, con el cual se automatiza el cálculo de los MPLI combinados.

BIBLIOGRAFÍA

- **Griffing B (1956a)** A generalized treatment of the use of diallel crosses in quantitative inheritance. Heredity 10: 31-50.
- Griffing B (1956b) Concept of general and specific combining ability in relation to diallel crossing systems. Austr.. J. Biol. Sci. 9: 463-401
- Harville D A, A L Carriquiry (1992) Classical and bayesian prediction as applied to an unbalanced mixed linear model. Biometrics 48: 987-1003.
- Kackar R N, D A Harville (1981) Unbiasesdness of two-stage estimation and prediction procedures for mixed linear models. Comm. Statist. A-Theory Methods 10: 1249-1261.
- Martínez G A (1983) Diseño y Análisis de los Experimentos de Cruzas Dialélicas. Centro de Estadística y Cálculo, Colegio de Postgraduados, Chapingo, México. 252 p.
- Martínez G A (1988a) Diseños Experimentales. Editorial Trillas. 1a. Ed. México. 756 p.
- Martínez G A (1988b) Análisis de los experimentos dialélicos a través del procedimiento MATRIX de SAS. Com. Estad. Comp. 7(1): 1-32
- Martínez G A (1988c) Análisis de los experimentos de Griffing usando algoritmos computacionales para el análisis de experimentos factoriales. Com. Estad. Comp. 8(2): 1-35.
- Martínez G A (1991) Análisis de los experimentos dialélicos a través del procedimiento IML de SAS. Com. Estad. Cómp. 10(2):1-36.
- Mastache L A A, A Martínez G, A Castillo M (1999a) Los mejores predictores lineales e insesgados (MPLI) en los diseños dos y cuatro de Griffing. Agrociencia 33: 81-90.
- Mastache L A A, A Martínez G, A Castillo M (1999b). Los mejores predictores lineales e insesgados (MPLI) en los diseños uno y tres de Griffing. Agrociencia 33: 349-359.
- **Robinson G K (1991)** That BLUP is a good thing: The estimation of random effects. Stat. Sci. 6(1): 15-51.

APÉNDICE

Estructura del Algoritmo Computacional

TITLE " SERIES DE EXPERIMENTOS DE GRIFFING";

PROC IML;SORT MASTACHE OUT=MAR BY LOC CRUZA;USE MAR;READ ALL INTO LUCY;

```
G=MAX(LUCY[,2]);R=MAX(LUCY[,6]);
L=MAX(LUCY[,1]);NC=NCOL(LUCY);
NN = NROW(LUCY);
  UUU =1;X = J(G*R,1, .);XX = J(G*R,1, .);
TIN=LUCY[,6];P=MAX(LUCY[,4]);
  DO Z = 1 TO G; DO W = 1 TO R;
X[UUU,1]=Z;XX[UUU,1]=W;UUU=UUU+1;END;
END:
III = I(G*R); II = J(G*R,1,1);
XD = II \mid DESIGN(X) \mid DESIGN(XX);
MM = XD*(GINV(XD`*XD))*XD`;
  HEIDI = J(G*L,1, .); MARY = J(G*L,1, .);
WWWW=1;
  DO Z = 1 TO L;DO W = 1 TO G;
MARY[WWWW,1]=Z;HEIDI[WWWW,1]=W;
WWWW = WWWW + 1;END;END;
  GAMA = HEIDI; N = NROW(GAMA);
  UNO = J(N,1,1);DISG = DESIGN(HEIDI);
DISL = DESIGN(MARY);
  GEN = UNO | DISG;
GENOTT = GEN*(GINV(GEN`*GEN))*GEN`;
  LOCAL=
DISL*(GINV(DISL`*DISL))*DISL`;CRUZAS=G;
  PRINT NN CRUZAS P L R;
  TITLE " MATRIZ DISEÑO TRAT Y REP:LOC ";
    PPP = 1;QQQ=1;DO MARY=1 TO L BY 1;
PP=MARY-1;DO K=PPP TO MARY*G BY 1;
        GAMA[K,1] =
GAMA[K,1]+PP*G;END;PPP=MARY*G+1;DO
KKK = QQQ TO MARY*R*G;
        TIN[KKK,1] = TIN[KKK,1] + PP*R;END;
QQQ = MARY*R*G+1;END;
A = DESIGN(TIN); REP = A*(GINV(A`*A))*A`;
B = DESIGN(GAMA);
        INT = B*(GINV(B`*B))*B`;
    GA = LUCY[,3]; GB = LUCY[,4];
    IF ANY (GA = GB) THEN O = 1; ELSE O = 0;
  TITLE " MATRIZ DISEÑO Zp Y DIAL ";
    GA0 = J(NN,P,.);GB0=J(NN,P,.);
    DO GAA = 1 TO P;DO CC = 1 TO NN;
        IF GA[CC,1]=GAA THEN
GA0[CC,GAA]=1;ELSE\ GA0[CC,GAA]=0;
        IF GB[CC,1]=GAA THEN
GB0[CC,GAA]=1;ELSE\ GB0[CC,GAA]=0;
    END;END;GAB=GA0+GB0;
    GZp =
J(NN,1,1) | GAB;GZpZp=GZp^*GZp;GZpIG=GINV(G
ZpZp);Mp=GZp*GZpIG*GZp`;
    DIAL = LU-
CY[,5];D=DESIGN(DIAL);DD=D^*D;
D0 = D*(GINV(DD))*D`;
  TITLE " DISEÑO DE Zp POR LOCALIDAD ";
```

PP = 0;COMB1 = J(G*R,2,.);

```
DO W = 1 TO G*R; COMB1[W,1]=LUCY[W,3];
                                                           AxESP[,QU] = DIALE*YYY[,QU]/(2*R)
COMB1[W,2]=LUCY[W,4]; END;
                                                    -J(G*R,1,1)*MED-PAB*AxACG[,QU];
                                                    END;YY = (DESIGN(X))^*YYY/R;WDIAL = 1;WWDD
    PA = COMB1[,1]; PB = COMB1[,2];
    PA0 = J(G*R,P,.);PB0=J(G*R,P,.);
                                                    =(P*(P-1)/2)+Q*P;AxACE=J(WWDD,L,.);
    DO PAA = 1 TO P;DO CC = 1 TO G*R;
                                                         DOW = 1 TO
                                                    WWDD;AxACE[W,]=AxESP[WDIAL,];
         IF PA[CC,1]=PAA THEN
PA0[CC,PAA]=1;ELSE\ PA0[CC,PAA]=0;
                                                    WDIAL=WDIAL+R;END;
         IF PB[CC,1]=PAA THEN
                                                         CMEi = J(L,1,1) *SCEi/(L*(G-1)*(R-1));
PB0[CC,PAA]=1;ELSE PB0[CC,PAA]=0;
                                                    Y=J(G*L,1,.);CME=CMEi/R;
    END;END;PAB=PA0+PB0;
                                                         ZZZZ = 1;DO Z=1 TO L;DO W=1 TO
                                                    G;Y[ZZZZ,1]=YY[W,Z];ZZZZ=ZZZZ+1;END;END;
J(G*R,1,1)||PAB;GzGz=Gz^*Gz;GzIG=GINV(GzGz);
                                                         FC =
Mz = Gz*GzIG*Gz;
                                                    (UNO^*Y)^{**2}/N;MEDIA = UNO^*Y/N;CV =
                                                    ((R*CME)**.5)*100/MEDIA;
    M0 = J(G*R,1,1)*(J(G*R,1,1))^{\prime}/(G*R);
    DIALL = J(G*R,1,.);
                                                         SCTOT = (LUCY[,F])^*LUCY[,F]-FC*R;
    DOW = 1TO
                                                    FV[10,2] = SCTOT;
                                                         SCLOC = (Y^*LOCAL^*Y-FC)^*R;
G*R;DIALL[W,1]=LUCY[W,5];END;
    DIALE =
                                                    FV[1,2] = SCLOC;
DESIGN(DIALL);DIALE=DIALE*DIALE`;
                                                         SCTRAT = (Y^*Y-FC)*R;
    LAURA = J(G*R,1,1);
                                                                = (Y^*GENOTT*Y-FC)*R;
                                                         SCG
    DO I = 1 TO G*R; IF DIALE[I, ]*LAURA=R
                                                    FV[3,2] = SCG;
THEN DIALEII. 1=2*DIALEII. 1:END:
                                                         SCE = L*(G-1)*(R-1)*CME*R;
  TITLE " DISEÑOS 2 Y 4 DE GRIFFING ";
                                                    FV[9,2] = SCE;
     IF ALL(GB > = GA) THEN DO;
                                                         SCGL = SCTRAT-SCG-SCLOC;
     IF ANY (GA=GB) THEN PRINT "DISEÑO 2 DE
                                                     FV[6,2] = SCGL;
                                                              = LUCY[,F];
GRIFFING";
                                                         DY
     ELSE PRINT "DISEÑO 4 DE GRIFFING":
                                                         SCREP = DY`*REP*DY-SCLOC-FC*R;
  TITLE " DISEÑO DEL CUADRO DEL ANALISIS
                                                    FV[2,2] = SCREP;
DE VARIANZA ";
                                                         FCC
                                                                = ((J(NN,1,1))^*DY)^{**2}/NN;
    CCC = \{ \text{"} GL \text{""SC" "CM" "F"} \};
                                                         SCacg = DY^*Mp*DY - FCC;
    DDD = \{"LOCALIDAD (L)" "REP:L"\}
                                                    FV[4,2] = SCacg;
"CRUZA(C)" " ACG" " ACE" "L x C"
                                                         SCace = DY^*(D0-Mp)*DY;
        " L x ACG" " L x ACE" "ERROR COMB."
                                                    FV[ 5,2]=SCace;
"TOTAL"};
                                                         SCaxacg = (J(L,1,1))*SCacgl - SCacg;
                                                    FV[7,2] = SCaxacg;
TITLE " ANALISIS DE VARIANZA ";
                                                         SCaxace = SCGL-SCaxacg;
           = J(10,4, .);
    FV
    DO F = 7 \text{ TO NC BY } 1;
                                                    FV[8,2] = SCaxace;
    VARIABLE = F - 6; YYY = J(G*R,L,.);
                                                         FV[1,1] = L-1;FV[2,1]=L*(R-1);FV[3,1]=
PP=0;SCEi=J(L,1,.);SCacgl=J(L,1,.);
                                                    G -1;FV[4,1] = P -1;FV[5,1] = G -P;
AxACG=J(P,L,.);SCdiall=J(L,1,.);AxESP=J(G*R,L,.);
                                                         FV[6,1] = (G-1)*(L-1);FV[7,1] =
     DO Z = 1 TO L;DO W=1 TO
                                                    (P-1)*(L-1);FV[8,1]=(L-1)*(G-P);
G*R;YYY[W,Z]=LUCY[W+PP,F];END;PP=Z*G*R;
                                                         FV[9,1] = L*(R-1)*(G-1);FV[10,1] = L*R*G-1;
END;
                                                         FV[1,3] = SCLOC/FV[1,1];
     DO OU=1 TO L;
                                                         FV[2,3] = SCREP/FV[2,1];
       SCEi[QU,1] = (YYY[,QU])^*(III)
                                                         FV[3,3] = SCG/FV[3,1];
-MM)*YYY[,QU];
                                                         FV[4,3] = SCacg/FV[4,1];
                                                         FV[5,3] = SCace/FV[5,1];
       SCacgl[QU,1] = (YYY[,QU])^*(Mz
                                                         FV[6,3] = SCGL/FV[6,1];
-M0)*YYY[,QU];
                                                         FV[7,3] = SCaxacg/FV[7,1];
       MED
(J(G*R,1,1))`*YYY[,QU]/(G*R);
                                                         FV[8,3] = SCaxace/FV[8,1];
       AxACG[,QU] =
                                                         FV[9,3] = R*CME;
(INV(PAB`*PAB))*PAB`*(YYY[,QU]
                                                         FV[1,4] = FV[1,3]/FV[2,3];
-J(G*R,1,1)*MED);
                                                         FV[3,4] = FV[3,3]/FV[6,3];
```

```
FV[4,4] = FV[4,3]/(FV[5,3]+FV[7,3]-FV[8,3]);
                                                        DIALELO =
                                                   J(WWDD,L+1,..);DDESP=J(WWDD,1,..);
          IF FV[4,4] > 0 THEN
FV[4,4]=FV[4,4];ELSE FV[4,4]=0;
                                                        DO LLL = 1 \text{ TO}
    FV[5,4] = FV[5,3]/FV[8,3];
                                                   WWDD;DDESP[LLL,1]=LLL;END;DDFF
    FV[6,4] = FV[6,3]/FV[9,3];
                                                   =CHAR(DDESP,3,0);
    FV[7,4] = FV[7,3]/FV[8,3];
                                                        DIALELO[,L+1]=ACE;
    FV[8,4] = FV[8,3]/FV[9,3];
                                                        DO SSS = 1 \text{ TO L};
  TITLE " ESTIMACION DE COMPONENTES DE
                                                   DIALELO[,SSS] = AxACE[,SSS];END;
VARIANZA ";
                                                               = KKK;KKEP[L+1,1] = {"ACE"};
     VARg = (FV[4,3] + FV[8,3] - FV[5,3]
                                                      TITLE " IMPRESION DE RESULTADOS ";
-FV[7,3])/(L*R*(4*Q+P-2));
                                                        PRINT VARIABLE:
        IF VARg>0 THEN VARg=VARg;ELSE
                                                        PRINT "CUADRO 1. ANALISIS DE VARIANZA
VARg=0;
                                                   COMBINADO. ";
     VARs = (FV[5,3]-FV[8,3])/(L*R);
                                                        PRINT FV[ROWNAME=DDD
        IF VARs > 0 THEN VARs = VARs; ELSE
                                                   COLNAME=CCC];
                                                        PRINT ,; PRINT MEDIA[FORMAT = 12.4]
     VARag = (FV[7,3]-FV[8,3])/(R*(4*Q+P-2));
                                                   CV[FORMAT = 12.4];PRINT /;
        IF VARag>0 THEN VARag=VARag;ELSE
                                                        PRINT "CUADRO 2. EST. DE COMP. DE LA
                                                   VARIANZA. ";
VARag=0;
     VARas = (FV[8,3]-FV[9,3])/R;
                                                        PRINT COMP[ROWNAME=VARIAN
        IF VARas > 0 THEN VARas = VARas; ELSE
                                                   COLNAME=ESTIM FORMAT=12.4];
VARas = 0:
                                                        PRINT /:
                                                        PRINT "CUADRO 3. ESTIMACION DEL
     VARe = FV[9,3];
     COMP = J(5,1,.);COMP[1,1] = VARg;
                                                   EFECTO DE PROGENITOR. ";
COMP[2,1] = VARs;
                                                        PRINT " LOCALIDAD";
                                                        PRINT PROG[ROWNAME=FFF
COMP[3,1] = VARag; COMP[4,1] = VARas; COMP[5,1]
                                                   COLNAME = KKK FORMAT = 12.4];
=VARe:
                                                                 PRINT MPLIC;
     ESTIM = {"V. EST."}; VARIAN = {"VARg"}
                                                                 PRINT K[FORMAT=12.4];PRINT /;
"VARs" "VARag" "VARas" "VARe"};
                                                        PRINT "CUADRO 4. EST. DE EFECTOS DE
                                                   ACE. ";
 TITLE "EST. DE ACG y ACE";
             = (INV(GAB^*GAB))*GAB^*(DY)
                                                        PRINT .; PRINT " AMBIENTE";
     EMC
-J(NN,1,1)*MEDIA);
                                                        PRINT DIALELO[ROWNAME=DDFF
     ACE
                                                   COLNAME=KKEP FORMAT=12.4];PRINT /;
(J(L,1,1)) *(AxACE) \'/L; ACE = ACE \;
                                                        END;END;
             = J(P,L+1,.); GGENO=J(P,1,.);
                                                      QUIT;
    DO LLL = 1 TO P BY
1;GGENO[LLL,1]=LLL;END;FFF=CHAR(GGENO,3,
0);
     PROG[,L+1] = EMC;
    DO SSS = 1 \text{ TO}
L;PROG[,SSS] = AxACG[,SSS];END;
IF VARg > 0 THEN K = (4*Q+P-2)/((4*Q+P-2))
+(R*L*VARs+VARe)/(R*L*VARg));ELSE K=1;
      MPLIC = K*EMC;
    HHHH
              = J(L+1,1,.);DO HHH=1 TO L;
HHHH[HHH,1]=HHH;END;
     KKK
             = CHAR(HHHH,4,0);
KKK[L+1,1] = {"EMC"};
```